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 Abstract
15-F 2t -isoprostane (15-F 2t -IsoP), an oxidation product of arachidonic acid (AA), affects vascular and platelet function; 
however, the bioactivity of other fatty acids oxidation products is unknown. This paper studied rat aortic vascular reactivity 
and human platelet aggregation in response to 14 oxidation products of AA, eicosapentaenoic acid (EPA), docosahexaenoic 
acid (DHA) and   α  -linolenic acid (ALA) compared with 15-F 2t -IsoP. It also compared the F 2t -IsoPs profi le in human plate-
lets. EPA-derived 15-F 3t -IsoP constricted rat aorta less than 15-F 2t -IsoP, but none of the other oxidation products affected 
vascular reactivity. Only 15-F 2t -IsoP (10  − 4  M) directly affected platelet aggregation. 15-F 3t -IsoP, ent-16-F 1 -phytoprostane 
(from ALA) and isofurans A and B (from AA) inhibited reversible aggregation to U46619. Unlike plasma, the platelet profi le 
of F 2 -IsoP showed that 8-F 2t -IsoP were higher than 15-F 2t -IsoP. Unlike 15-F 2t -IsoP, the test compounds derived from fatty 
acids oxidation did not affect vascular or platelet function. Elevated platelet 8-F 2t -IsoP could limit 15-F 2t -IsoP-induced 
aggregation under conditions of oxidant stress.  

  Keywords:   Isoprostanes  ,   phytoprostanes  ,   isofurans  ,   neuroprostanes  ,   platelet aggregation  ,   vascular reactivity     
Background 

 Oxidation of biomolecules including lipids has been 
implicated in a diverse range of diseases including 
cardiovascular disease, cancer, neurodegenerative dis-
ease and lung disease. Enhanced oxidant stress is char-
acterized by an imbalance of increased free radicals 
principally derived from oxygen and antioxidant 
defenses. This process can occur either locally in the 
arterial wall or systemically and it is hypothesized to 
contribute to the development and progression of ath-
erosclerosis [1]. Free radicals can be generated endog-
enously by the mitochondria or as a result of oxidative 
bursts during phagocytosis or from exogenous sources 
such as environmental or chemical toxins. 
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 Lipids that undergo peroxidation are major targets 
of free radical attack. F 2  – Isoprostanes (F 2  – IsoP) are 
prostaglandin-like products of free radical attack on 
arachidonic acid (AA) [2,3]. They differ structurally 
from prostaglandins and are pre-formed esterifi ed to 
phospholipids and released by phospholipases. There 
are four possible F 2 -IsoP regioisomers giving rise to 
the 15-, 8-, 12- and 5- series F 2 -IsoP. Their measure-
ment provides a reliable assessment of  in vivo  lipid 
peroxidation [3]. Other fatty acids can also undergo 
peroxidation.   α  -linolenic acid (ALA) forms the 9-and 
16-series, F 1 -IsoP, also called F 1 -phytoprostanes 
(F 1  – PhytoP) [4]. The long chain omega-3 fatty acid 
eicosapentaenoic acid (EPA) forms six regioisomers 
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of IsoP called F 3 -isoprostanes (F 3  – IsoP) [5] and 
docosahexaenoic acid (DHA) forms eight regioiso-
mers of IsoP, also known as F 4 -neuroprostanes 
(F 4 -NeuroP) [6]. The IsoP are thought to be formed 
mainly under conditions of low oxygen tension. Under 
high oxygen tension arachidonic acid is preferentially 
channelled to form the isofurans (IsoF) that have 
a substituted tetrahydrofuran ring [7]. It has been 
suggested that assessment of both IsoP and IsoF 
will provide a better index of lipid peroxidation under 
all circumstances [8]. 

 As the IsoP, IsoF, NeuroP and PhytoP are structur-
ally related to prostaglandins there is a need to assess 
their biological activity, in particular with respect 
to their effects on vascular and platelet function. 
Research to date has shown that several of the 15-
series F 2 -IsoP, in particular 15-F 2t -IsoP, 9- epi -15-
F 2t -IsoP and 15- epi -15-F 2t -IsoP, are vasoconstrictors 
[9,10]. 12-F 2t -IsoP constricts retinal and brain microve-
ssels [11]. In contrast, two of the 5-series F 2 -IsoP 
have no vasomotor effects [12]. In addition, 15-F 2t -
IsoP is anti-aggregatory in human whole blood [13], 
but promoted platelet aggregation in platelet rich 
plasma in the presence of ADP [14]. 

 The aim of this study was to examine the biological 
activity, particularly effects on vascular reactivity and 
platelet function, of a number of PhytoP, IsoP, 
NeuroP and IsoF (Figure 1), which to date have not 
been described.   

 Methods  

 Materials 

 15-F 2t -IsoP, 15-F 3t -IsoP, 8-F 2t -IsoP and 2,3-dinor-15-
F 2t -IsoP were obtained from Cayman Chemical Co. 
(Ann Arbor, MI, USA) 9-F 1t -PhytoP, 9-epi-9-F 1t -
PhytoP, ent-9-F 1t -PhytoP, 9-epi-ent-9-F 1t -PhytoP, 
16-F 1t -PhytoP, 16-epi-16-F 1t -PhytoP, ent-16-F 1t -PhytoP, 
16-epi-ent-16-F 1t -PhytoP and 4(RS)-4F 4t -NeuroP were 
synthesized according to the published procedure [15 –
 17]. 8-epi-SC- Δ  13 -9-IsoF  ( IsoF-A) and 8,15 diepi-SC-
 Δ  13 -9-IsoF  ( IsoF-B) [18] were synthesized according to 
the method of Taber and Zhang [19] and provided by 
Professor L. J. Roberts II. The above compounds were 
stored under nitrogen to prevent oxidation and kept at 
 − 20 ° C until the day of platelet aggregation and vascular 
reactivity experiments.   

 Vascular reactivity studies in rat isolated aorta 

 This study was passed by the University of Western 
Australia Animal Ethics Committee. Male Wistar rats 
(Animal Resources Centre, Murdoch, Australia) were 
euthanized at 8 weeks of age (pentobarbitone sodium, 
160 mg/kg i.p.). The thoracic aorta was quickly 
excised, cleaned of adhering connective tissue and cut 
into 3 mm long segments. Individual segments were 
suspended under a resting tension of 2 g in tissue 
baths containing 2 ml Krebs bicarbonate solution 
maintained at 37 ° C and bubbled with 5% CO 2  in O 2 . 
Following a 45-min equilibration period, the integrity 
of the aorta was tested by pre-contracting with 
KCl (200 mM). Endothelial responses were subse-
quently tested using 1  μ M acetylcholine after pre-
contraction with phenylephrine (200 nM). Dilator 
and constrictor responses to the test compounds were 
then evaluated at a concentration of 10  − 9  – 10  − 4  M 
after pre-contraction with phenylephrine (200 nM). 
The test compounds were dissolved in a small volume 
of ethanol and vasodilator and constrictor responses 
were compared with a reagent control of the same 
volume of ethanol.   

 Human platelet aggregation studies 

 Whole blood (20 ml) was collected into 3.8% triso-
dium citrate and centrifuged at 190 g for 10 min 
to give platelet-rich plasma (PRP). After removal of 
PRP, blood was further centrifuged at 2000 g for 
10 min to provide platelet-poor plasma (PPP). The 
platelets were counted using a haemocytometer and 
were diluted in PPP to a fi nal concentration of 2  �  10 8  
platelets/ml. Aggregation was measured as percentage 
of light transmission at 5 min following the addition 
of the aggregant. Compounds 1 – 8 and 10 – 15 were 
tested at concentrations of 10  − 6  M and 10  − 4  M com-
pared with the following tests compounds, collagen 
(1  μ g/ml), U46619 (1  μ M) and 15-F 2t -IsoP (10  − 4 M) [20]. 
The effect of test compounds on reversible aggre-
gation to the thromboxane A 2  mimetic, U46619 
(1.6  �  10  - 7  M) was determined by pre-incubating the 
platelets with the test compounds at 10  − 4  M for 5 min 
prior to challenge with U46619.   

 Measurement of platelet F 2 -isoprostanes 

 Blood samples were taken from 36 fasting healthy 
men aged between 20 – 65 years recruited by adver-
tisement from the general population. The study 
was passed by the University of Western Australia 
Human Ethics committee. All participants gave writ-
ten informed consent to participate. The blood (20 
ml) was collected into tubes containing EDTA, 
reduced glutathione and butylated hydroxytoluene. 
The blood was centrifuged immediately at 200 g to 
give platelet-rich plasma (PRP). The PRP was centri-
fuged and the platelet pellet was washed with 10 ml 
of 0.9% saline containing EDTA and BHT. Platelets 
were re-suspended in Hepes buffered Hanks (1 ml), 
counted using a haemocytometer, and diluted to 
1  �  10 9  platelets/ml in Hepes buffered Hanks 0.1% 
BSA (HBSSB). Aliquots of 2  �  10 8  cells were incu-
bated with saline (control) or calcium ionophore 
(2.5  μ g/ml) for 15 min at 37 ° C. The incubates were 
placed on ice and centrifuged at 4 ° C for 10 min at 2000 g. 
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Figure 1.     Structures of the 15 test compounds used for vascular reactivity and platelet aggregation studies. Products derived from   α   
linolenic acid (ALA): (9-series F 1t -Phytoprostanes):- 9-F 1t -Phytoprostane (9-F 1t -PhytoP), 9-epi-9-F 1t -Phytoprostane (9-epi-9-F 1t -PhytoP), 
ent-9-F 1t -Phytoprostane (ent-9-F 1t -PhytoP), 9-epi-ent-9-F 1t -Phytoprostane (9-epi-ent-9-F 1t -PhytoP); (16-series F 1t -Phytoprostanes):- 16-
F 1t -Phytoprostane (16-F 1t -PhytoP), 16-epi-16-F 1t -Phytoprostane (16-epi-16-F 1t -PhytoP), ent-16-F 1t -Phytoprostane (ent-16-F 1t -PhytoP), 
16-epi-ent-16-F 1t -Phytoprostane (16-epi-ent-16-F 1t -PhytoP). Products derived from arachidonic acid (AA): (15-series F 2t -isoprostanes):- 
15-F 2t -Isoprostane (15-F 2t -IsoP), 2,3-dinor-15-F 2t -Isoprostane (2,3-dinor-15-F 2t -IsoP), (8-series F 2t -isoprostanes):- 8-F 2t -Isoprostane 
(8-F 2t -IsoP). Derived from AA under high O 2  tension: 8-epi-SC- Δ  13 -9-IsoF (IsoF-A) and 8,15 diepi-SC- Δ  13 -9-IsoF (IsoF-B). Derived 
from EPA: 15-F 3t -Isoprostane (15-F 3t -IsoP). Derived from DHA: 4(RS)-4-F 4t -Neuroprostane (4(RS)-4-F 4t -NeuroP).  
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The platelet pellet and supernatant were stored frozen 
with 800  μ g of BHT at  − 80 ° C until assay. Platelet 
content and release of F 2 -IsoPs eluting with the 
15-F 2t -IsoP and 8-F 2t -IsoP peaks were assayed in the 
platelet pellet and supernatant after base hydrolysis 
using deuterated internal standards for 15-F 2t -IsoP 
and 8-F 2t -IsoP as previously described [21].    

 Statistics 

 Differences in vascular response to the lipid oxidation 
products compared to the reagent control were 
assessed with a Dunnett ’ s test. Values are presented 
as mean and SEM. Differences in aggregation response 
to U46619 before and after incubation with each lipid 
oxidation product were assessed by comparing the 
area under the curve for each aggregation. Unstimu-
lated and calcium ionophore stimulated platelet con-
tent and release of F 2 -IsoP identifi ed by 8-F 2t -IsoP 
and 15-F 2t -IsoP internal standards were assessed 
using a paired  t -test after log transformation. Values 
are geometric mean and 95% CI.   

 Results  

 Vascular reactivity studies in rat isolated aorta 

 None of the compounds tested (#1 – 15, Figure 1) had 
vasodilator activity when tested in a rat aorta prepara-
tion pre-contracted with phenylephrine. When vaso-
constrictor responses were examined in the rat aorta, 
signifi cant changes in tension were only observed 
at a concentration of 10  − 4 M. A comparison of com-
pounds at 10  − 4 M showed that 15-F 2t -IsoP (#9) pro-
duced a signifi cant change in tension of 1.4  �  0.24 g 
( p   �  0.05) and 15-F 3t -IsoP (#14) produced a change 
of 0.757  �  0.2 g ( p   �  0.05) when compared with 
the ethanol control (Figure 2). Responses to 2,3-
dinor-15-F 2t -IsoP (#10, Figure 1), 4(RS)-4-F 4t -
NeuroP (#15, Figure 1), 16-epi-ent-16-F 1t -PhytoP 
(#8, Figure 1) ,  ent-16-F 1t -PhytoP (#7, Figure 1) ,  
16-epi-16-F 1t -PhytoP (#6, Figure 1) ,  16-F 1t -PhytoP 
(#5, Figure 1) ,  9-epi-ent-9-F 1t -PhytoP (#4, Figure 1) ,  
ent-9-F 1t -PhytoP (#3, Figure 1) ,  9-epi-9-F 1t -PhytoP 
(#2, Figure 1) ,  9-F 1t -PhytoP (#1, Figure 1) ,  8-epi-
SC- Δ  13 -9-IsoF  ( IsoF-A) (#12, Figure 1), 8,15 
diepi-SC- Δ  13 -9-IsoF  ( IsoF-B) (#13, Figure 1) and 
8-F 2t -IsoP (#11, Figure 1) were not signifi cantly 
different from the vehicle control.   

 Platelet aggregation studies 

 None of test compounds #1 – 8 or #10 – 15 caused 
aggregation or reversible aggregation at doses up 
to 10  − 4  M. We confi rmed previous reports that 15-F 2t -IsoP 
(#9) caused reversible aggregation at a dose of 10  − 4  M, 
and inhibited U46619 induced reversible aggrega-
tion. We showed that pre-incubation of platelets with 
15-F 3t -IsoP (#14, Figure 1), ent-16-F 1t -PhytoP (#7, 
Figure 1) ,  IsoF-A (#12, Figure 1) and IsoF-B (#13, 
Figure 1) at a concentration of 10  − 4  M for 5 min 
signifi cantly inhibited subsequent reversible aggrega-
tion to U46619 (Figure 3). None of the other com-
pounds tested had any effect on U46619 reversible 
aggregation.   

 Comparison of plasma and platelet F 2 -isoprostanes 

 Using deuterated standards and gas chromatography 
mass spectrometry, we identifi ed F 2 -IsoPs in peaks 
corresponding to 15-F 2t -IsoP and 8-F 2t -IsoP internal 
standards. Both of these F 2 -IsoPs were quantifi ed in 
human platelets and plasma. In contrast to plasma 
where 15-F 2t -IsoP is found in large quantities, in 
platelets 8-F 2t -IsoP is present in much larger amounts 
than 15-F 2t -IsoP (Figure 4).   

 Basal and Ca ionophore stimulated platelet 
15-F 2t -IsoP and 8-F 2t -IsoP 

 In platelets the levels of 8-F 2t -IsoPs were 6-fold higher 
(295, CI 170-582 fmol) than those of 15-F 2t -IsoP 
(43, CI 30-60 fmol), (Figures 5A and B). The levels 
of 15-F 2t  and 8-F 2t -IsoPs released into the medium 
under basal conditions were similar to those found in 
the platelet pellet (Figures 5C and D). Stimulation of 
platelets with Ca ionophore resulted in a 5-fold 
increase in platelet content of 8-F 2t -IsoP ( p   �  0.01) 
and a 3-fold increase in 15-F 2t -IsoP ( p   �  0.01) 
(Figures 5A and B). Release of 15-F 2t  and 8-F 2t -IsoPs 
into the medium after Ca ionophore were also signif-
icantly increased (Figures 5C and D).    

 Discussion 

 This study examined the effects of previously untested 
oxidation products of ALA, AA, EPA and DHA on 
  Figure 2.     Change in tension of rat isolated aorta preparations in 
response to each of the test compounds at dose of 10  − 4  M.  ∗  p   �  0.05, 
compared with the ethanol control Dunnett ’ s test. Shown is the mean 
response ( �  SEM) obtained in four separate aortic segments.  
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vascular reactivity and platelet function. None of 
the products tested was a vasodilator in rat aorta 
pre-contracted with phenylephrine. Our data confi rm 
previous reports that 15-F 2t -IsoP possesses signifi cant 
vasoconstrictor activity. We describe for the fi rst 
time that 15-F 3t -IsoP derived from EPA also had sig-
nifi cant vasoconstrictor activity in rat aorta, although 
the vasoconstrictor response induced by 15-F 3t -IsoP 
was less than that by 15-F 2t -IsoP. Other IsoP derived 
from oxidation of AA including 2,3-dinor-15F 2t -IsoP 
and 8-F 2t -IsoP had no detectable vasoconstrictor 
activity. The IsoF formed from AA under conditions 
of high oxygen tension and the oxidation products of 
ALA (F 1 -PhytoP) and DHA (F 4 -NeuroP) also had 
no detectable vasoconstrictor activity. 

 The effect of the compounds tested on platelet 
aggregation was examined in platelet-rich plasma. We 
confi rmed that 15-F 2t -IsoP (10  − 4  M) caused revers-
ible aggregation of platelets and inhibited reversible 
aggregation induced by the TXA 2  mimetic U46619 [20]. 
  Figure 3.     Change in light transmission during platelet aggregation in response to U46619 alone or after pre-incubation with the test 
compounds 15-F 3t -IsoP, ent-16-F 1t -PhytoP, IsoF-A and IsoF-B.  †  p   �  0.001, for differences in area under the curve for incubation of each 
of the test compounds with U46619 compared with U46619 alone.  



474  A. Barden et al.

Fr
ee

 R
ad

ic
 R

es
 D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 o
f 

Sa
sk

at
ch

ew
an

 o
n 

12
/0

5/
11

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
None of the other compounds tested caused aggrega-
tion at doses up to 10  - 4  M. We report for the fi rst time 
that under these conditions, 15-F 3t -IsoP inhibited 
reversible aggregation to U46619. In contrast, 8-F 2t -
IsoP, 2,3-dinor-15-F 2t -IsoP and 4(RS)-4-F 4t -NeuroP 
did not signifi cantly alter platelet aggregation in 
response to U46619. The PhytoP that are formed 
from the n3 fatty acid ALA did not affect platelet 
aggregation  per se . However, of the PhytoP tested only 
ent-16-F 1t -PhytoP attenuated reversible aggregation 
to U46619. 

 Our data suggest that the lipid peroxidation 
products 15-F 3t -IsoP derived from the long chain 
n3 fatty acid EPA has attenuated constrictor action 
compared with 15-F 2t -IsoP, but is similar in that 
it inhibits reversible aggregation to a thromboxane A 2  
mimetic. Recently two binding sites for 15-F 2t -IsoP 
(8-iso-PGF 2 α  ) have been identifi ed. One pathway is 
a stimulatory pathway via the TXA 2  receptor whilst 
the other is an inhibitory pathway signalling via cAMP, 
the receptor for which has not been identifi ed [22]. 
Further studies are required to characterize the
platelet binding sites and signalling pathways for 
15-F 3t -IsoP derived from EPA. In contrast, 4(RS)-
4-F 4t -NeuroP from DHA did not show any vasoactive 
or platelet effects. Randomized controlled trials of 
dietary supplementation with fi sh, fi sh oil or purifi ed 
EPA and DHA show that EPA and DHA are signifi -
cantly incorporated into platelet membranes resulting 
in a signifi cant attenuation of agonist-induced platelet 
aggregation [23 – 25]. Our fi ndings in this study 
suggest that the reduced vasoconstrictor activity of 
15-F 3t -IsoP in particular may in part contribute to 
the cardiovascular benefi ts of fi sh oil and n3 fatty 
acids. However, it should be noted that although a 
number of studies have shown reduced 15-F 2t -IsoP in 
human and animal tissue, plasma and urine after n3 
fatty acid supplementation [26 – 29], most of the stud-
ies that have detected 15-F 3t -IsoPs and NeuroPs after 
fi sh oil have been  in vitro  or in small animals [30] or 
humans after an acute infl ammatory challenge [31]. 
Therefore, the benefi cial effects of n3 fatty acids are, 
in part, more likely due to a reduction in the biologi-
cally active 15-F 2t -IsoP rather than an increase in 
15-F 3t -IsoP. Similarly the PhytoP had no detectable 
direct effects on vasoconstrictor or platelet aggrega-
tory activity, suggesting that although they circulate in 
comparatively high concentrations in plasma [32] they 
are unlikely to affect vascular or platelet function. 

 The lipid peroxidation products formed under high 
oxygen tension, IsoF-A and IsoF-B both inhibited 
reversible aggregation to U46619, suggesting they 
may modulate platelet function under conditions of 
high oxygen tension. The only studies of platelet 
function under conditions of increased oxygen have 
been carried out in asphyxiated piglets that have been 
resuscitated with 21% and 100% oxygen [33]. In that 
study, high oxygen was associated with inhibition of 
platelet aggregation to collagen; however, the effect of 
high oxygen could not be dissociated from the effects 
of hypoxia. The effects of high blood oxygen levels on 
platelet aggregation and isofuran production need 
further investigation. 

 We have identifi ed for the fi rst time that F 2 -IsoP 
corresponding with the 8-F 2t -IsoP peak was the 
more abundant in platelets with basal levels 6-fold 
higher than that of 15-F 2t -IsoP. This contrasts with 
plasma and urine where 15-F 2t -IsoPs are more 
abundant. The reason for the increased platelet 
content of 8-F 2t -IsoP compared with 15-F 2t -IsoP 
is unclear, but given that 8-F 2t -IsoP did not affect 
platelet aggregation in contrast to 15-F 2t -IsoP that 
causes aggregation, it may be an adaptive mecha-
nism to limit aggregatory responses. Stimulation 
of platelets with calcium led to a signifi cant increase 
  Figure 4.     (A) Shows a typical ion chromatogram of F 2 -IsoP 
in plasma (m/z  �  569, top panel) corresponding to the retention 
time of the deuterated internal standards for 15-F 2t -IsoP and 
8-F 2t -IsoP (m/z  �  573, lower panel) and showing that the peak 
corresponding with 15-F 2t -IsoP internal standard is more abundant 
in plasma (B) a typical ion chromatogram for platelet F 2 -IsoP (m/z  �  
569, top panel) corresponding to the retention time of the 
deuterated standards for 15-F 2t -IsoP and 8-F 2t -IsoP (m/z  �  573, 
lower panel) showing that the peak corresponding to 8-F 2t -IsoP is 
more abundant in platelets.  
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in the platelet content and release of 8-F 2t -IsoPs 
and 15-F 2t -IsoPs. The ability of Ca ionophore 
to increase platelet content and release of both 
8-F 2t -IsoP and 15-F 2t -IsoP suggests that it may 
stimulate oxidant stress in the platelet. As our stud-
ies were not conducted under conditions of cycloox-
ygenase inhibition we cannot exclude the possibility 
that the actions of Ca ionophore are in part due to 
free radical release, secondary to activation of 
cyclooxygenase. 

 We conclude that vascular and platelet function 
is not directly affected by the majority of the test 
compounds formed from free-radical attack on AA, 
EPA, DHA and ALA. The higher levels of 8-F 2t -IsoP 
in platelets could be a protective mechanism to limit 
15-F 2t -IsoP induced aggregation under conditions 
of oxidant stress. 
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